PC/104 adds processing power, dense I/O for the industrial IoT revolution

6The IIoT [industrial Internet of Things] is poised to reshape factory automation, transportation, energy, and other industrial markets through the application of intelligence and connectivity, but the embedded systems that power these segments are still hampered by concerns about longevity, reliability, and low power consumption. Meanwhile, the use of higher-precision sensors, growing demand for video and graphics capability, and the desire for local analytics processing are driving an exponential demand for performance.

As usual, it is the responsibility of embedded – and now IoT – designers to balance these wants with size, weight, power, and cost (SWaP-C) thresholds. In addition, critical industries typically call for solutions that can be integrated into existing systems without extensive reengineering.

At the intersection of these requirements lies the proven, compact, and easily expandable PC/104 standard. Aside from its small footprint and low power consumption, close cooperation between component suppliers and board designers has resulted in a stackable architecture that has risen to the design challenges of each of the last three decades (Figure 1). Now equipped with next-generation I/O and support for modern processors, PC/104 is primed to upgrade the installed base of industrial systems with capabilities.

Figure1
Figure 1: PC/104’s rugged and modular architecture allows developers to add functionality by merely adding a board to the stack (Source: ).

The evolution of PC/104 from industrial to IIoT

In keeping with Moore’s Law, the drive for more computational power, and therefore the need for faster data links, the PC/104 family of specifications has consistently incorporated new I/O technologies since its inception in 1987. As shown in Figure 2, this evolution has included the addition of PCI and PCI Express (PCIe) interfaces from the original ISA bus foundation.

Figure2
Figure 2: The PC/104 family of specifications has provided a steppingstone to higher-performance embedded systems since 1987. Now, it is enabling these systems to transition to IIoT (Source: ).

The progression of PC/104 technology also coincides with rising bandwidth requirements in industrial systems, which now employ systems-on-chip (SoCs) to support additional and connectivity as part of the IIoT infrastructure. For designers looking to scale existing designs to support these capabilities, PC/104-Plus and PCI/104-Express provide the ideal bridge technology.

PCI/104-Express, for example, supports not only PCIe, but high-speed interfaces like USB, SATA, and Gigabit Ethernet (GbE) as well. These interfaces, along with a higher level of signal integrity in the PCI/104-Express specification, ease integration of next-generation I/O peripherals and eliminate the need for reengineering when adding modules to the stack.

Additionally, with PC/104-compatible peripheral modules for almost any required capability, designers can move quickly from industrial to IIoT.

Powering PC/104 into IIoT with peripherals

The ability to add functionality by stacking peripheral modules on top of a processor baseboard has helped PC/104 maintain its popularity over the years. In addition to providing a platform for new technologies, corner-mounting holes and stack-through connectors on each board – excepting the base – mean that legacy systems built on PC/104 technology can be upgraded easily, even across vendors.

For industrial engineers looking to transition their systems to IIoT readiness, today’s PC/104 peripheral modules offer features ranging from intelligent and connectivity to high-resolution imaging over GbE and more. Below are a few use cases that demonstrate how the compact and rugged PC/104 form factor can be leveraged to quickly add design capabilities.

Data acquisition

PC/104’s flexible I/O architecture can be coupled with fast processors for high-capture-rate data-acquisition systems. One example is a high-speed camera and frame grabber in which a PCIe/104 card can be used to connect multiple cameras while also controlling the high-speed bus. How? High-speed processing and specific peripheral circuitry can coexist on the same PC/104 board.

One PCIe/104 data acquisition I/O card that integrates I/O technology with a PCIe is the E104-DAQ1616 module from Diamond Systems Corporation. The module supports all data-acquisition functions, including analog-to-digital (), digital-to-analog (), digital input/output (DIO), and counters/timers. The board also supports the PCI-104 connector footprint as an option for communication with PCI-104 cards within existing stacks.

Gigabit Ethernet

Aside from advanced processors, industrial applications like remote surveillance and traffic monitoring demand high-speed video packet streaming. Support for GbE, USB readiness, and low power consumption in the PCI/104-Express and PCIe/104 deliver on these requirements in abundance.

The LAN25222HR and LAN35222HR dual-GbE modules from RTD Embedded Technologies provide GbE communications over the PCI/104-Express and PCIe/104 architectures, respectively. Driven by the Intel 82574IT GbE controller, these modules each offer two GbE connections and 10/100/1000 Mbps RJ45 communications on each channel.

When deployed in video applications, the RTD boards perform tasks like data offloading and frame grabbing by providing desktop-level performance in a PC/104 form factor. Dual-GbE interfaces, a host of other I/O, and onboard Trusted Platform Module (TPM) make it a potential centerpiece for connected industrial designs that require high levels of data integrity and security.

Meanwhile, WinSystems’ PX1-C415 PCIe/104 (Figure 3), based on the Intel Apollo Lake-I E3900 processor, delivers dual GbE and a range of additional I/O through the OneBank . The boards also include a TPM, making it a seamless choice for small-form-factor, rugged IIoT communications systems that handle sensitive data.

Figure3
Figure 3: The PXI-C415 is a PCIe/104 single-board computer based on the Intel Atom E3900 processor, offering dual Gigabit Ethernet (GbE) connectivity and a trusted platform module (TPM) for sensitive Industrial IoT applications (Source: WinSystems)

Wi-Fi controllers

Wi-Fi is increasingly becoming the communication channel of choice for non-real-time applications in industrial environments like factory floors. Here again, PC/104’s stackable architecture enables designers to seamlessly incorporate Wi-Fi modules or subsystems into existing industrial designs.

For instance, RTD Embedded Technologies offers PCI/104-Express and PCIe/104 Mini-PCIe card carrier modules for embedding Wi-Fi functionality into industrial applications: the WLAN25203ER (Figure 4) and WLAN35203ER. Both of these Wi-Fi solutions incorporate Atheros LAN (WLAN) modules that are compliant with the 802.11a/b/g/n standards.

Figure4
Figure 4: Wi-Fi card carriers like the WLAN25203ER (6a) and WLAN35203ER (6b) from RTD Embedded Technologies can boost PC/104 stack capabilities by connecting them to wireless IIoT networks (Source: RTD Embedded Technologies).

The dual-slot Mini-PCIe card carriers support both Type 1, Type 2, and universal PCI/104-Express and PCIe/104 expansion pinout options. Type 1 features PCIe x1 and x16 links with USB 2.0, while Type 2 supports PCI Express x1 and x4 links with USB 3.0 and SATA for the latest peripheral devices. The universal pinout supports PCIe x1 and/or USB 2.0.

The PC/104 and x86 partnership continues

At this time, when the world of graphics and displays is converging with IIoT designs, x86 processors with powerful CPUs and video-processing capabilities are becoming increasingly prominent. These processors offer more compute performance, higher-resolution graphics, and faster I/Os than previous-generation industrial CPUs while also consuming less power.

Originally designed with support for x86 processors in mind, PC/104 is already positioned to handle these workloads. VersaLogic’s PC/104-Plus Liger board is a case in point, featuring a seventh-generation Intel core processor based on the Kaby Lake microarchitecture. The mix of traditional I/O and advanced processing performance on the Liger offers the ability to upgrade legacy industrial designs while preserving connectivity with already-deployed modules or custom peripherals. The Liger also integrates a TPM security chip directly onto the PCB that provides hardware-level security and prevents unauthorized access for sensitive industrial applications. (Figure 5.)

Figure5
Figure 5: The Liger EPM-43 from VersaLogic is a PC/104-Plus expansion board that makes it easy to upgrade systems to seventh-generation Intel core processor technology (Source: VersaLogic Corp.).

The existing design infrastructure around x86 processors and associated software complements PC/104’s versatility by enabling emerging functionality and maintaining compatibility with existing solutions. The combined ecosystem also offers a powerful platform on top of which industrial developers can customize their designs to meet specific requirements.

PC/104: Reload, don’t rebuild

A dense mix of I/O interfaces, wired and wireless connectivity mechanisms, and expansion options in a small form factor continue to enable designers to place PC/104 technology in embedded systems ranging from resource-constrained control systems to high-performance IIoT solutions. By providing support for advanced processors and high-speed interfaces while still delivering on the promise of reliability and long lifecycle operation, PC/104 developers can depend on their investment well into the future. With an architecture that allows industrial designers to quickly deliver more performance and new functionality, there is no need to design new modules, source additional modules, or rebuild entire systems from scratch.

For organizations looking to take advantage of IIoT without massive investment or significant downtime, it’s time to get reacquainted with PC/104. To join the Industrial IoT revolution, visit the PC/104 Consortium at www.pc104.org.

Jeff Milde is Executive Director of the PC/104 Consortium.

PC/104 Consortium www.pc104.org

Figure 2 | The PC/104 family of specifications has provided a steppingstone to higher-performance embedded systems since 1987. Now, it is enabling these systems to transition to IIoT (Source: PC/104 Consortium).